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Abstract

The effects of fluid shear on drag and lift forces acting on a spherical bubble are studied for high particle
Reynolds numbers of 0.5 < Re, < 200 by means of a three-dimensional numerical simulation, and the effects
are compared with those for a solid particle. The results show that the fluid shear increases the drag acting
on a bubble. On the other hand, the lift always acts from the lower fluid-velocity side to the higher fluid-
velocity side, and tends to approach a constant value for high particle Reynolds numbers. Further, the
asymptotic value of the lift increases with increasing fluid shear rate. Although the trend of the drag on a
bubble against the fluid shear is similar to that on a solid particle, the trend of the lift is quite different. For
a solid particle the direction of the lift changes from the higher fluid-velocity side to the lower fluid-velocity
side with the increasing particle Reynolds number. The difference in the lift between a bubble and a solid
particle can well be explained by taking account of pressure and viscous contributions to the lift. © 2001
Elsevier Science Ltd. All rights reserved.

Keywords. Lift; Shear flow; Bubble; Solid particle; Numerical simulation

1. Introduction

Since the dispersion phenomena of solid particles or bubbles are often seen in environmental
and industrial shear flows, it is of importance to investigate the effects of mean shear on fluid
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forces acting on a solid particle or a bubble in settling environmental problems and in designing
industrial equipments.

When a solid particle or a bubble is moving in a shear flow, a transverse force referred to as lift
is exerted. The lift acting on a spherical solid particle in a linear shear flow has often been
investigated. Saffman (1965) derived an analytical expression of the lift by using a matched
asymptotic expansion method under the assumptions of
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and McLaughlin (1991) extended Saffman’s analysis to smaller ¢. Here, a is the radius of the
sphere, U, is the fluid velocity on the streamline through the center of a sphere, v is the kinematic
viscosity, a is the fluid shear rate of the mean flow, Q is the rotational angular speed of a sphere
and o* is the dimensionless shear rate of fluid defined by

()

Dandy and Dwyer (1990) evaluated the lift for high particle Reynolds numbers of 0.1 < Re, < 100
by means of a three-dimensional numerical simulation of a linear shear flow around a spherical
solid particle, and Mei (1992) proposed an approximate expression for the lift on the basis of the
results of Saffman (1965) and Dandy and Dwyer (1990). Recently, Komori and Kurose (1996) and
Kurose and Komori (1999) also tackled the same problem by using a three-dimensional numerical
simulation for higher particle Reynolds numbers of 0.5 <Re, <500, and found an interesting
behavior of lift; the direction of lift changes from the higher fluid-velocity side to the lower fluid-
velocity side with increasing Re,,.

On the other hand, the studies on the shear lift acting on a bubble for high particle Reynolds
numbers are extremely limited. Mei and Klausner (1994) obtained an expression of the lift on a
spherical bubble in a linear shear flow by combining the results for a solid particle in a viscous
flow by McLaughlin (1991) and Mei (1992) with the results for a bubble in an inviscid flow by
Auton (1987). Recently, Ligendre and Magnaudet (1998) estimated the lift by using a three-di-
mensional numerical simulation. According to their results, the lift always acts to the higher fluid-
velocity side independent of the particle Reynolds number, and the behavior of the lift on a
bubble is quite different from that on a solid particle. However, the reason why the lift generation
mechanism is different between a bubble and a solid particle has not been clarified.

The purpose of this study is, therefore, to investigate the effects of fluid shear on the lift acting
on a spherical bubble in a viscous linear shear flow for high particle Reynolds numbers by means
of a three-dimensional numerical simulation, and to clarify the difference in the lift generation
mechanism between a bubble and a solid particle. The computations for a bubble were carried out
for 0.5 <Re, <200, and the results are compared with those of Kurose and Komori (1999) for a
solid particle. In addition, the variations of the drag acting on a bubble against the particle
Reynolds number and fluid shear rate were investigated.
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2. Numerical simulation

The flow geometry and coordinate system for the present computations are shown in Fig. 1.
The imposed flow is a linear shear flow around a spherical bubble. The bubble is assumed to be so
small that the deformation can be neglected. The three-dimensional unsteady Navier—Stokes (NS)
equations in cylindrical coordinates are given by
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The NS equations were directly solved using a finite difference scheme based on the marker and
cell (MAC) method. By taking divergence of the NS equations, the dimensionless pressure-
Poisson (PP) equation was derived as follows:
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The NS equations and the PP equation were solved alternately. Here D, V and V? are defined by
D=V.V,
V= ( X3 r7 ) (Uv Va W)7 (5)
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Fig. 1. Coordinate system for a spherical bubble in a linear shear flow.
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The numerical procedure used here was essentially the same as that used in Hanazaki (1988) and
Kurose and Komori (1999). The boundary condition on the bubble surface is given by a slip
condition

V.n=0, nx(t-n)=0 for r=a, (6)

whereas a no-slip condition (V = 0 for » = a ) is used for a solid particle. Here n is the outward
unit normal to the bubble surface, and t is the viscous stress tensor. The boundary condition of
velocity upstream of a bubble was given in a dimensionless form by

U=1+do"y (7)
and the velocity condition on the outer boundary, except upstream, is

ov
s 0. (8)
By using a grid generation method developed by Thames et al. (1977), grid points were concen-
trated near the bubble surface in the (x,r)-plane. The maximum sizes of the computational do-
main were 20 and 10 radii in the x and r directions, respectively. The (x,r, #)-coordinate system
was transformed to the (5, {, 0)-coordinate system with an equal grid spacing (Fig. 2). The grid
points used in this study were 35 x 61 x 48 in the 1, { and 0 (0 < 0 < 2n) directions. To accurately
simulate the flow around a bubble, several mesh points at least are required in the boundary layer.
By using the above grid generation method, ten or more than ten mesh points existed in the depth
of the boundary layer which can be estimated by 1 /Rella/ 2. The transformed governing equations
were discretized to construct the finite difference formulation. The nonlinear terms in the NS
equations were approximated by a third-order scheme of Kawamura and Kuwahara (1984), and
the other spatial derivatives were approximated by a second-order central difference scheme. The
dimensionless time step Af was 0.01.

The drag and lift, F, and Fi, are the components of the fluid force acting on the spherical
bubble in the x and y directions, and they can be calculated by the sum of the pressure and viscous
force contributions

Fig. 2. Side view of numerical grids on the center plane (z = 0).
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The tangential stress n x (t-n) is zero on the bubble surface (see Eq. (1)), and the viscous force
consists of normal stress n - t-n. The drag and lift coefficients, Cp and Cy, are defined by

E

Ci =g
(1/2)p; U

(10)

where p, is the fluid density.

The computations were performed for particle Reynolds numbers of Re,=0.5,
1,2,5,10,20, 50,100 and 200 and for fluid shear rates of o* = 0,0.1,0.2 and 0.4. The CPU time
required to establish a quasi-steady state for each case was about 2000 s on an NEC SX-3
supercomputer of the Center for the Global Environmental Research, National Institute for
Environmental Studies.

3. Results and discussion
3.1. Drag

Fig. 3 shows the variation of the drag coefficient Cp for a bubble in a uniform unsheared flow
against the particle Reynolds number Re,, together with that for a solid particle predicted by

Kurose and Komori (1999). The analytical solutions by Stoke’s assumption (Re, < 1) are given
by
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Fig. 3. Comparison of drag coefficient Cp in a uniform unsheared flow for a bubble with that for a solid particle: (o)
bubble; (e) solid particle. The solid and dashed lines show the predictions by using the empirical expressions of Moore
(1963) and Clift et al. (1987), and the analytical expressions based on Stoke’s assumption, respectively.
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and the empirical predictions by Moore (1963) and Clift et al. (1987) (Magnaudet et al., 1995) are
written by
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The analytical solutions and empirical predictions are also shown in the same figure. The present
Cp for a bubble, as well as Cp for a solid particle (Kurose and Komori, 1999), generally agrees
with the empirical predictions although for a bubble the difference between numerical and em-
pirical results becomes larger at high particle Reynolds numbers of Re, > 50.

Fig. 4 shows the effect of fluid shear rate «* on the drag coefficient Cp for a bubble in a linear
shear flow. At a fixed value of Re,, Cp increases with increasing o, and the dependency of Cp on
o* 1s more obvious for higher Re,. This is clearly seen in the distribution of Cp against o for
Re, =200 (Fig. 5). The trend of Cp with o is similar to that for a solid particle given in Kurose
and Komori (1999).

3.2. Lift

Fig. 6 compares the lift coefficient C, for a bubble in a linear shear flow with Cp for a solid
particle from Kurose and Komori (1999). The results obtained by Ligendre and Magnaudet
(1998) and Mei and Klausner (1994) for a bubble and by McLaughlin (1991) for a solid particle
are also shown in the figure. The expressions of Mei and Klausner (1994) and McLaughlin (1991)
are given by

10°

Cp [-]

Re, [-]

Fig. 4. Drag coefficient Cp for a bubble in a linear shear flow: (o) o* =0; (A) o* =0.1; (O) «* = 0.2; (V) o = 0.4.
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Fig. 5. Effect of fluid shear rate «* on drag coefficient Cp for a bubble at Re, = 200.
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Fig. 6. Comparison of lift coefficient Cy in a linear shear flow for a bubble (open symbols) with that for a solid particle
(closed symbols): (A, A) o* =0.1; (O) «* =0.2; (v, ¥) o* = 0.4. The symbols (+) and (x) show the predictions for
o* = 0.04 and 0.4 by Ligendre and Magnaudet (1998). The solid and dashedlines show the predictions for o* = 0.1,0.2
and 0.4 by Mei and Klausner (1994), and for o* = 0.1 and 0.4 by McLaughlin (1991), respectively.
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where the subscripts M-K, Mc and Sa denote the results of Mei and Klausner (1994),
McLaughlin (1991) and Saffman (1965), respectively. Cp g, in (16) is given by

o] 12
CrLsa = 5.816 17
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and J(e) is the empirical expression obtained by using a table of J(¢) vs. € in McLaughlin (1991)
J(¢) = 0.6765{1 + tanh [2.5log,, (¢ + 0.191)]}{0.667 + tanh [6(¢ — 0.32)]}. (18)
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To derive (15), the analysis of a viscous linear shear flow around a solid particle by McLaughlin
(1991) was generalized to be applicable to a bubble for low particle Reynolds numbers, and the
analysis of a bubble in an inviscid linear shear flow by Auton (1987) was used for high particle
Reynolds numbers. In the analysis of Auton (1987), the lift on a bubble is assumed to be linear
against o in the large limit of Re,,.

As shown in Fig. 6, the lift on a bubble is always positive and acts to the higher fluid-velocity
side. The Cy, decreases with increasing Re,, (Re, < 5), and it tends to approach a constant value for
larger particle Reynolds numbers. It is also found from the variation of Cp against o* for
Re, = 200 in Fig. 7 that the asymptotic value linearly increases with o*. The trends of Cy with Re,
and o are very similar to those by Ligendre and Magnaudet (1998) and Mei and Klausner (1994).
Ligendre and Magnaudet (1998) suggested that as Re, increases, C; [= (3Cy)/(8«")] approaches
Auton (1987)’s solution of C; = 0.5, which was derived for a spherical bubble in an inviscid linear
shear flow with o* — 0. However, the results were not confirmed in the present study. The present
C] at Re, = 200 was about 0.3 independent of «* and less than 0.5 of Ligendre and Magnaudet
(1998), although C; may approach the value of 0.5 for much higher Re,,.

Komori and Kurose (1996) and Kurose and Komori (1999) found that Cy. for a spherical solid
particle in a linear shear flow becomes negative for high particle Reynolds numbers, and explained
the negative Cy, by investigating pressure and viscous contributions, Cy , and Cyy, to the total lift
CL. The results suggest that the difference in the lift generation mechanism between a bubble and a
solid particle may be caused by the effects of pressure and viscous force. Therefore, the variations
of Crp, CLs and Cy, with Re,, for a bubble together with those for a solid particle are shown in Fig.
8 for o = 0.4. For a solid particle, C;. changes its sign from positive to negative with increasing
Re,, since both of Cy , and Cy y become negative in the range 1 < Re, < 100. On the other hand, Cp
for a bubble is positive independent of Re, because C. , consistently keeps a positive constant
value although Cy ¢ rapidly decreases to zero with increasing Re,,. Furthermore, it is found that for
a bubble with high particle Reynolds number, Cy ;, is more dominant than Cy ;.

Fig. 9 shows the surface contours of the component for the pressure and viscous force in the y
direction per unit area of the surface; pressure lift defined by —pe, - n and viscous lift by t-n - e,,
for o* = 0.2 on a bubble at Re, = 200 and on a solid particle at Re, = 1 and 200. The red and blue

Fig. 7. Effect of fluid shear rate «* on lift coefficient C. for a bubble at Re, = 200.
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Fig. 8. Contributions of pressure Cy , and viscous force Cy ¢ to the total lift coefficient Cy for o* = 0.4: (a) bubble (open
symbols); (b) solid particle (closed symbols); (o, @) Cr; (O, m) CLp; (A, A) Cyy.

lines indicate high and low values of the pressure lift contribution, and positive and negative
values of the viscous lift contribution, respectively. The thick line in Fig. 9(c) shows the zero value
of the viscous lift. Kurose and Komori (1999) explained the variations of C, and Cy; with Re,
for a solid particle as follows. Although the strong downward pressure lift appears on the front
side of the solid particle (arrow A) for Re, =1 (see Fig. 9(b)), the moderately strong upward
pressure lift is widely distributed over the bottom of the solid particle (this is confirmed by the
contour lines distributed at the rear part). Further, the strong upward viscous lift appears widely
on the lower part of the rear side (arrow C) compared with the strong downward one on the upper
part. Therefore, both the integrated pressure lift and viscous lift over the whole surface, Cy , and
Cv s, show positive values. For high particle Reynolds number of Re, = 200, the flow separations
appear behind the solid particle (see Fig. 9(c)). The positions of the flow separations are indicated
by arrows S in Fig. 9(c). The flow separation on the higher fluid-velocity side is located slightly
upward compared to that on the lower fluid-velocity side. In addition to the strong downward
pressure lift appearing on the front side of the solid particle (arrow A), strong pressure lifts caused
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Fig. 9. Surface contours of the component for the pressure and viscous force in the y direction per unit area on a bubble
and a solid particle in a linear shear flow for o* = 0.2: (a) bubble at Re,, =200; (b) solid particle at Re, = I;(c) solid particle
at Re, = 200. The red and blue lines indicate high and low values of the pressure lift contribution, and positive and
negative values of the viscous lift contribution, respectively. The thick line in (c) shows the zero value of the viscous lift.

by the flow separations also act on both the upper and lower parts of the rear side of the solid
particle (arrows B and C). However, since the values of the pressure lift on the upper and lower
parts of the rear side (arrows B and C) are roughly comparable, the strong downward pressure lift
on the front side of the solid particle (arrow A) becomes dominant and therefore Cy, becomes
negative. The downward viscous lift is widely distributed on the surface of the solid particle, and
Cvy also shows negative values.

On the other hand, for a bubble at Re, = 200, flow separations almost disappear, and the
distribution of the pressure lift is symmetrical with regard to the y-axis (Fig. 9(a)). In contrast to
the solid particle at Re, = 200, for the bubble the upward and downward pressure lifts on the
front side are almost comparable, and the upward pressure lift is widely exerted on the lower part.
Also, the upward viscous lift on the upper part is slightly stronger than the downward viscous lift
on the lower part. As a result, both C;, and Cpy show positive values even for high particle
Reynolds numbers.

4. Conclusions

A three-dimensional numerical simulation was done for a linear shear flow around a spherical
bubble with high particle Reynolds numbers of 0.5 < Re, <200, and the effects of fluid shear on
drag and lift were investigated by comparing with the results of a solid particle.

The main results from this study can be summarized as follows:

(1) The fluid shear rate increases the drag on a spherical bubble, and the effect of the fluid shear

is enhanced with increasing Re,. The behavior of the drag is similar to that for a solid particle.

(2) The lift on a spherical bubble always acts to the higher fluid-velocity side, and the trend is

quite different from that for a solid particle. The difference can well be explained by considering

the pressure and viscous contributions to the lift.
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